What is Asynchronous programming?

Asynchronous programming has been attaining much attention for a while and a good reason. Although it can be complicated than the outdated linear style, it is also much more efficient.

Asynchronous programming aims to solve the point that a shoe needs to tie up, but the person does not want to wait until they are done with their jog. The same is goes for a web page. Let us say resources are loading from various locations, and one of the pictures present on some servers is not responding. With synchronous loading, it may hang the entire page. With asynchronous loading, other functions of the page load while the requestor waits for the different server’s response.

As a System system, the system may not wait for an execution step to complete before moving on to the next process. It will move on to future executions even though a forgoing step has not yet finished and is still running in the background. It means that the system recognizes what to do when an initial step does finish execution.

Asynchronous Programming in Python

Asynchronous Practices in Real Life

Asynchronous programs require thinking differently about coding. While this new way of philosophy can be hard to cope with the User’s head around, it is also an exciting practice. That is for the reason that the real world is almost utterly asynchronous.

Imagine this: A parent is trying to do numerous things at once. They have to balance the checklist, and keep an eye on the kids, do laundry. One way or another, they can do all the tasks in parallel without even thinking about it! Let’s break it down:

  • Balancing the checklist is an asynchronous task. One-step follows another until the task completes.
  • However, it can halt away from the checklist to do laundry. Unloaded dryer, move clothes from the washer to the dryer, and start another washer again.
  • Operating the washer and dryer is an asynchronous task, but the bulk job happens after the washers and dryers are started. Once they are operational, let them go, Operator can walk away and get back to the checklist tasks. At this very point, the dryer and washer tasks have become asynchronous. They will run unconventionally until the timer goes off (notifying the User that the task needs attention).

These examples can help to demonstrate the perceptions of blocking and non-blocking code. Let’s think about this in programming terms. In this example, the User is like a CPU. While the User is moving the laundry around, the User (the CPU) is busy and blocked from performing other work, like harmonizing the checklist, which is okay because the task is comparatively swift.

On the other hand, starting the dryer and washer does not stop Users from executing the different tasks. It is an asynchronous function because Users do not have to postpone for it to finish. Once it is underway, Users can perform other tasks, which refers to a context switch.
The context of what the User is doing has transformed, and the machine’s beeper notifies the User when the laundry task is complete.

This is how a human works all the time. They unsurprisingly juggle numerous things at once, often without even knowing about it. However, a developer’s trick is to interpret these behaviors into code that performs the same tasks.

Asynchronous Practices in Python

Asyncio

Asyncio() is a concurrency function that was provided in Python 3.4. This is designed to utilize coroutines and futures to streamline asynchronous programs. It makes it almost as readable as synchronous code as callbacks do not exist in it.
Asyncio() structures the code, so subtasks are distinct as coroutines permit Users to plan them as they please, including concurrently. Coroutines contain return points where the User describes possible points where a context shift can happen if other tasks are undecided. However, It will not if there is no task pending.

Coroutines

A coroutine() is a function with an async() explanation. It can also be an object that gets returned from a coroutine() function.

By marking a function as async(), it can be called await statement like await say_after(1, ‘hello’). Await means that the package will run up until the await statement, call the function, and suspend implementation until the function completes and other coroutines may run.

That interruption of execution means that the package returns to the event loop. When the User uses asyncio(), an event loop executes all the asynchronous tasks, completes network IO and runs sub-processes. For the most part, when a programmer writes coroutines, they will use tasks to run them.

Tasks

Tasks enable the coder to run a coroutine in an event loop; that streamlines managing the implementation of several coroutines.

Event Loop

An event loop manages and allocates the accomplishment of different tasks. It records them and handles assigning the flow of control between them.

Multiprocessing

The most recognizable way is to use multiple processes. From the terminal, the User can start the script two, three, four…ten times (numerous times), and then all the scripts will run individually or simultaneously. The operating structure underneath will take responsibility for sharing the processing of CPU resources amongst all those instances. Alternatively, the User can use the Multi-Processing library, which supports spawning processes, as shown in the example below.

def print_func(continent='Asia'):
    print('The name of continent is : ', continent)
if __name__ == "__main__":  # confirms that the code is under main function
    names = ['America', 'Europe', 'Africa']
    procs = []
    proc = Process(target=print_func)  # instantiating without any argument
    procs.append(proc)
    proc.start()

    # instantiating process with arguments
    for name in names:
        # print(name)
        proc = Process(target=print_func, args=(name,))
        procs.append(proc)
        proc.start()

    # complete the processes
    for proc in procs:
        proc.join()

Output

The name of the continent is Asia
The name of the continent is America
The name of the continent is Europe
The name of the continent is Africa

Tasks and coroutines have their usages. Suppose there is a combination of I/O and computation or different computations. In that case, the implementer can favorably run them together and decrease processing time by running concurrently rather than consecutively.

However, this does not let the User run numerous similar tasks at the same time. For that User need multiprocessing—the focus of a future article.

Async() is a style of concurrency programming technique in which multiple tasks release the processing of CPU during waiting periods in order to accommodate other tasks. In Python, there are numerous ways to achieve concurrency. Based on the code flow, requirement, architecture design, data manipulation, and use cases, the User can select these methods.

Benefits of using Asynchronous Programming

Practicing Asynchronous programming in Python is beneficial for solving multiple problems given the complexity and needed timely execution. The concept of synchronous programming is to take one step of execution and perform that particular task alone. Even if the program consists of loops, conditional branching, or function calls, synchronous programming deals with one-step execution at a time. On the other hand, asynchronous programming exhibits different behavior. The asynchronous programming style difference is that the system may not stop and wait to complete the current execution step before moving on with the next step. Asynchronous programming proves helpful in handling critical types of problems. Following are some of the advantages of using asynchronous programming in Python:

Parallel Programming

Asynchronous programming is a kind of parallel programming. This programming manner allows the separate execution of the work unit without depending on the primary application thread. Once the program has separately executed the step, it notifies about its successful execution or failure to the main thread.

Efficient Performance

Asynchronous style of programming helps to improve the performance of an application in development. It also helps in increasing the responsiveness of applications and sites by loading various parts independently. It allows quick responses to users’ requests and performs efficiently compared to synchronous programming in critical circumstances.

Smart Programming Practice

Even though asynchronous programming is more complex than the traditional programming style, it is way more efficient than it. Since most server-side programming, especially the code in Heavy IO applications, depends on external resources. Therefore, when a user requests some data, the program waits for a response and does nothing in the conventional method. However, with an asynchronous style, there is no need to waste time, and the program can go on with the other tasks to handle in the queue. So, this programming practice proves resource and time-efficient in complex problems.

Conclusion

Many programming practices include using synchronous programming. The drawback of using synchronous programming is that if the user requests the server, he has to wait until the response is displayed. The user experience in such cases is not good with the application. Therefore, utilizing asynchronous programming can enrich the user experience by making the website or the application user-friendly. Moreover, if the program involves slower input-output operations, there is a definite chance of optimizing the code by introducing asynchronous programming techniques.

This rule of thumb will help increase the efficiency of the overall program. The asyncio( ) makes the tasks in the code run concurrently. It solves the problems which are related to IO bounds. It makes the execution faster than conventional methods. A simple example of making things faster is of chess master paradox. For example, the chess master has to play chess with different people. He can play with them one by one or make a move with the first player and leave him thinking about his move while the chess master moves to the next player to make his move. The latter will save more time and makes things go smoother and faster. Asynchronous programming helps to deal with multiple operations without being hung up on any of them in a nutshell.